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Abstract

A linearized unsteady aerodynamic analysis is pre-

sented for unsteady, subsonic vortical flows around lifting

airfoils. The analysis fully accounts for the distortion ef-

fects of the nonuniform mean flow on the imposed vortical

disturbances. A frequency domain numerical scheme which

implements this linearized approach is described, and nu-

merical results are presented for a large variety of flow con-

figurations. The results demonstrate the effects of airfoil

thickness, angle of attack, camber, and Mach number on

the unsteady lift and moment of airfoils subjected to peri-

odic vortical gusts. The results show that mean flow dis-

tortion can have a very strong effect on the airfoil unsteady

response, and that the effect depends strongly upon the

reduced frequency, Mach number, and gust wave numbers.

I. Introduction

Aerodynamicists have been concerned with the analy-

sis of unsteady flows since the early days of powered flight.

Vibration problems and flutter were the main concerns of

early researchers. Because of the complexity of unsteady

flows, and due to the lack of computational capabilities,

the classical work in unsteady aerodynamics relied heavily

upon mathematical analysis and engineering approxima-

tions. The first treatments which analyzed the unsteady

flow around an oscillating airfoil assumed the blade to be a

simple fiat plate airfoil in incompressible flow. By assum-

ing the airfoil to be a flat plate at zero mean incidence,

the early researchers were able to linearize the governing

equations about a uniform mean flow and to uncouple the

unsteady part of the flow from the uniform steady state.

Later work in unsteady aerodynamics was concerned

with predicting unsteady gust loading on airfoils due to

the occurrence of upstream vortical disturbances and flow

nonuniformities. The main engineering problems which mo-
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tivated this concern were the effects of atmospheric turbu-

lence on aircraft wings and the effects of upstream flow

nonuniformities on rotating propeller blades. By using the

thin airfoil approximation and decomposing the unsteady

velocity into solenoidal and irrotational (potential) compo-

nents, the early researchers were able to reduce the mathe-

matical formulation of the gust response problem to essen-

tially that of the oscillating airfoil problem. Sears 1 was

the first to derive an analytical solution for the unsteady

lift on a rigid flat plate airfoil moving through a sinusoidal

gust pattern in an incompressible flow.

In the 1960's and 70's, researchers began tackling the

more general problem of unsteady flows around lifting air-

foils. The theoretical analysis of the unsteady flow in this

case is much more difficult than for the case of thin, un-

loaded airfoils. For the lifting airfoil problem the mean

flow is no longer uniform and the unsteady flow cannot be

uncoupled from the steady mean flow.

Goldstein and Atassi 2 were the first to present a the-

oretical treatment of unsteady vortical flow around lifting

airfoils that fully accounts for the coupling between the

steady mean flow and the unsteady perturbation velocity

field. Their second-order analysis of two-dimensional, in-

compressible, periodic vortical flows around thin airfoils

with small camber and angle of attack showed that the

convected vortical gusts are nonlinearly distorted by the

spatially varying mean flow.

The problem was re-examined by Atassi 3, who showed

that in spite of the nonlinear character of the interactive

gust problem, the unsteady lift formula can be written as

the sum of the Sears function and three other functions

accounting separately for the effects of mean flow incidence,

airfoil camber, and airfoil thickness. The explicit formulas

for the unsteady lift derived in [2] and [3] showed that for a

transverse and longitudinal gust, the mean flow distortion

has a very strong effect on the magnitude and phase of the

gust response.

For most flows encountered in applications, one deals

with heavily loaded airfoils at high Mach number and with

three-dimensional upstream gusts. The formulation for the

unsteady gust problem in this case leads to the linearized

Euler equations. Goldstein 4 presented an approach for

this general problem in which he split the unsteady veloc-

ity field into vortical and potential parts. The vortical part



isdeterminedfromthegustupstreamconditionsandthe
LagTangiancoordinatesof themeanflow,andthepoten-
tial partis governedbyanon-constantcoefficient,inho-
mogeneousconvectivewaveequation.Thusin Goldstein's
formulation,themathematicalproblemisreducedtosolv-
ingasingleequation.Goldstein'sworkthusbroughtabout
asignificantsimplificationin theformulationofunsteady
vorticalflows.

Fortheimportantspecialcaseof flowspasta body
withastagnationpoint,however,Goldstein'svorticalve-
locitybecomessingularalongthebodysurfaceandin the
wake.Dueto thissingularityin thevorticalvelocity,the
unknownpotentialmustsatisfysingularboundarycondi-
tionsalongthesesurfaces.Thesefeaturesmakeit difficult
to useGoldstein'sapproachdirectlyfornumericalcompu-
tationsofunsteadyvorticalflowspastabodywithastag-
nationpoint.

AtassiandGrzedzinski5haveshownthatit ispossi-
bletomodifyGoldstein'ssplittingoftheunsteadyvelocity
insuchawayasto removethesingularityin thevortical
velocityalongthebodysurfaceandinthewake.Theirreg-
ularizationofGoldstein'sapproachleadsto aformulation
fortheunsteadyproblemwhichiswell-suitedtonumerical
solutiontechniques.

Upuntilrecently,mostnumericalworkin unsteady
aerodynamicsconcentratedonpotentialmethods.The
earlyworkdealtwithsolvingtheunsteadysmalldistur-
bancepotentialequationasa wayof obtainingtheun-
steadyflowaroundoscillatingairfoilsorcascades.Later
workwasdirectedtowardsolvingthelinearizedunsteady
potentialequationandtheunsteadyfull potentialequa-
tion.Morerecentlyresearchershaveworkedtodevelopthe
so-calledprimitivevariablemethods,whereinthefull un-
steadyEuleror Navier-Stokesequationsaresolvedusing
a time-marchingapproach.Whereastheearlierpotential
methodsweredirectedprimarilyatsolvingunsteadyflows
aroundoscillatingairfoilsandcascades,theprimitivevari-
ableapproachcanbeusedto solvea widerrangeof un-
steadyflows.Thisapproach,however,hasthedrawbackof
beingprohibitivelyexpensiveforroutineengineeringcalcu-
lationssuchasareencounteredindesignwork.

Inthepresentpaperweareconcernedwithlargescale
unsteadydisturbancessuchasareencounteredin therotor-
statorinteractionof turbomachineryandpropellers.For
suchflowsthelengthscaleassociatedwiththeupstream
vorticaldisturbancesisusuallyofthesameorderofmag-
nitudeasthebladechord,andthecharacteristicunsteady
velocityisinmanyapplicationsanorderofmagnitudeless
thanthemeanvelocity.Thus,if wedenotethelength
scalebyl _ and the characteristic velocity by [ffo¢[, the time

scale associated with the upstream unsteady disturbances is
1'

_-_--[. The time scale associated with the underlying mean
flow is -----¢--¢ where c is the airfoil chord length and U .... t

Uoo,rtl '

is the relative mean velocity. Then for large scale upstream

disturbances where 1' is the same order of magnitude as

the blade chord or larger, and [t7oo[ is small compared to

Uoo,rel, we will have

c l'

Uoo,r,-------7<< Iff_l" (1.1)

That is, the time scale associated with the mean flow is an

order of magnitude less than the time scale associated with

the upstream unsteady disturbances. This is essentially the

condition under which the linearized approach is valid.

For this kind of unsteady flow, the dominant effects

will be due to the high speed convection of the upstream

flow nonuniformities, and the linearized aerodynamic ap-

proach of Goldstein as modified by Atassi and Grzedzinski

represents an attractive alternative to the primitive variable

approach.

The authors have developed a finite difference, fre-

quency domain numerical scheme which implements this

linearized approach for the purpose of obtaining numerical

solutions to compressible, unsteady, periodic vortical flows

around two-dimensional lifting airfoils. The schcme that we

present fully accounts for the distortion of the imposed up-

stream vortical disturbances by the nonuniform mean flow.

Previous numerical efforts by McCroskey and Goorjian _

and McCroskey T to solve this kind of unsteady vortical

flow have not accounted for the distortion of the imposed

gust by the mean flow gradients, but have invoked the lin-

ear thin airfoil approximation in which the gust propagates

without distortion. As was shown in [2] and [3], and as will

be seen later in the present paper, the mean flow distortion

has a very strong effect on the airfoil unsteady response,

and must be taken into account if accurate unsteady re-

sults are to be obtained.

From a computational standpoint, there are numerous

advantages to the numerical scheme which we have devel-

oped. Among the advantages are the fact that the require-

ments for CPU time and computer storage are much less

than for primitive variable methods. The codes that have

been developed can easily be run on a present day scien-

tific work station as opposed to requiring a large mainframe

computer. In addition, since the governing equation is tiu-

ear, a variety of standard differencing schemes are available

for the numerical solution of the boundary value problem,

and the derivation of physically correct far field boundary

conditions is much simpler.

Another advantage of the present approach is that it

provides not only an accurate near field solution from which

the body dynamic response to the imposed vortical distur-

bance can be determined, but it also provides an accurate

far field solution from which the acoustic radiation can be

calculated. This will directly yield the acoustic intensity

and power radiated without the use of Lighthill's analogy

and the tedious calculation which may result from the re-

fraction and scattering of the radiated acoustic waves by

the spatially varying flow field.

Our major purpose in the present paper is to present

numerical solutions for the general problem of unsteady vor-

tical flows around lifting airfoils in compressible subsonic

flows. The results that are presented demonstrate the ef-

fects of airfoil thickness, camber, angle of attack, and Mach



numberontheairfoilunsteadyresponse(unsteadylift and
moment)to three-dimensional,periodicvorticalgustsim-
posedupstream.InSectionII,wepresentthemathematical
formulationofthegeneralboundaryvalueproblem.InSec-
tionIII,wegiveabriefdescriptionofthenumericalscheme
thathasbeendeveloped.Readersinterestedin thefull de-
tailsof ournumericalapproachshouldconsultReferences
8or9. Finally,in SectionIVwepresentanddiscussnu-
mericalresultsforalargevarietyofflowconfigurations.

II. Linearized Unsteady Aerodynamics for

Nonuniform Potential Flow Fields

Linearized Euler Equations

Consider an inviscid, compressible flow past an airfoil

placed at nonzero incidence to a stream with uniform up-

stream velocity Uo_ in the xl direction. We shall assume in

the present discussion that there are no shocks in the flow.

Now if we also assume the fluid to be an ideal, non-heat

conducting gas with constant specific heats, then the gov-

erning continuity, momentum, and energy equations can be

written
Dp
0-7 + p_ 6 = 0 (2.1)

D6
P-bY= -_p (2.2)

Ds

D-7 = 0 (2.3)

where D_ is the material derivative.

In the absence of upstream flow disturbances, and as-

suming the airfoil to be rigid, there will be a steady flow

[70(£) about the airfoil such that 60(£) ---* Uoo_" as zi

-c¢, where _"is a unit vector in the zl direction. Let us

suppose that fax upstream a small amplitude, unsteady ve-

locity disturbance, which we will denote by floe, is imposed

on the flow. Then since ]ff¢¢1 is small compared to Uoo,

we assume that there will be small, unsteady perturbations

in the physical properties of the otherwise steady flow. It

is therefore reasonable to linearize the governing equations

(2.1) - (2.3) about the mean flow state and to introduce

perturbation quantities as follows:

[_(£', t) = Uo(i) + if(i, t) (2.4)

p(_, t) = po(£)+ p'(£, t) (2.5)

p(£, t) = po(£) + p'(< t) (2.6)

4< t) = s0 + _'(s, t) (2.7)

where 0 subscripts denote the steady mean flow quantities

which are assumed to be known, the entropy so is constant,

and if, p',/, and s' are the unsteady perturbation velocity,

pressure, density and entropy, respectively.

Substituting relations (2.4) - (2.7) into equations (2.1)

- (2.3) and neglecting products of small quantities, one ob-

tai'ns the following linearized continuity, momentum, and

energy equations

DoR' + p,¢. 00 + ¢. (po,r)= 0 (2.s)
Dt

Doff .

P0(--'_ + if" VU0) + p'60- Vff0 = -Vp' (2.9)

Dos'

Dr = 0, (2.10)

where _ = _, + 6°. ¢ is the convectivederivative associ-
ated with the mean flow.

Equations (2.8) - (2.10) are the governing partial dif-

ferential equations for the unknown perturbation quantities

ff, p',p', and 2' for the problem of small, unsteady distur-

bances to an otherwise steady flow. The upstream distur-

bunce ffoo is essentially a boundary condition which is im-

posed on the unsteady velocity ft. That is, we must have

ff -_ ffoo as za _ -c_. We shall assume in the present

paper that ffoo is the only upstream disturbance imposed

on the mean flow, i.e., there are no imposed entropy distur-

bances or incident acoustic waves. Now from previous work

concerning small amplitude velocity disturbances imposed

on a uniform flow, it is known that the unsteady velocity

can be decomposed into the sum of a vortical component

which has zero divergence, is purely convected, and is de-

coupled from the pressure and any thermodynamic prop-

erty, and an irrotational component which is directly re-

lated to the pressure but produces no entropy fluctuations

10,4 Then far upstream the total velocity 6 must be of the

form

6 = Uoo-[+ ffoo(S - (VoJ) (2.1i)

where

_.,_oo = 0. (_.12)

There is no pressure associated with the velocity field ffo_.

The unsteady velocity ff must satisfy

ff(£,t) --* ffo¢(i- -_Uoot) as zl _ -oc, (2.13)

and the pressure p' obeys

p'(_',t)---_0 as xl----_-_. (2.14)

Goldstein's Approach

Goldstein 4 proposed a general approach for the anal-

ysis of potential mean flows with imposed upstream vorti-

cal and entropic disturbances which greatly simplifies the

mathematical treatments of such flows. Under the condi-

tions assumed on the flow in the previous section, the mean

flow can be expressed as the gradient of a potential,

60(_) = V¢0. (9.15)

In the present work we consider two-dimensional mean flow,

so that 60(£) = (0___ 0._ ).
Oxt ' Oz2

The simplest ease of potential mean flow with imposed

upstream disturbances is the thin airfoil problem where the

potential flow is simply a uniform parallel flow. In this

case it is advantageous to split the unsteady velocity into



a vorticalcomponentwhichissolenoidal,andanirrota-
tionalcomponentwhichisexpressedasthegradientofan
unsteadypotential.Forthegeneralproblemof nonuni-
formflowsaroundrealairfoils,however,thesplittinginto
solenoidalandirrotationalcomponentsdoesnotleadtoany
simplificationofthemathematicalformulation(SeeRefer-
ence11fordetails).

Goldsteinproposeda newapproachwhereintheun-
steadyvelocityisdecomposedintothesumof a known
vorticalcomponentif(1)andanunknownpotentialcompo-
nentX_¢sothat

_(_,t) = _r) + ¢¢. (2.16)

The vortical component if(I) is essentially a function of the

upstream disturbance ffoo and the mean flow Lagrangian

coordinates and their spatial gradients. The unsteady po-

tential satisfies a nonconstant-coefficient, inhomogeneous,

convective wave equation

-_:v_---_TD°1 D0¢,_ l_.(p0_¢) = l_.(p0_l)), (2.17)
=_ (_o- =_ j po po

where _ is the convective derivative associated with the

mean flow, and co and P0 are, respectively, the mean flow

speed of sound and density. ¢ is related to the pressure by

p' = -p0(_D_ ¢. (2.18)

The vortical component u-'(I) is in general not sole-

noidal, but it does become solenoidal far upstream where

the mean flow is uniform. For flows with no upstream en-

tropy disturbances, if(I) is given by

og
.,(2) = _'oo(g - _'v_,) • _. (2.19)

The components of (X - "_Voot), where

= (X1, X2, X3), are essentially Lagrangian coordinates

of the mean flow fluid particles. X2 = X2(zl,z2,x3)

and )(3 = X3(zl,x2,z3) are functionally independent in-

tegrals of the equations

dxl dz2 dz3

v--Y= W = W (2.20a)

such that

X2 --_ x2 and X3 ---*z3 as zx ---* -co. (2.20b)

For two-dimensional mean flow, we may take

xI/0

x_ = -- (2.21)
pooUo_

and

X3 = x3, (2.22)

where _0 is the stream function of the mean flow and x3

is the spatial coordinate in the spanwise direction. The

component X1 is defined by

X_ = UooA, (2.23)

where A is the Lighthill "Drift" function 12, which can be

expressed in terms of ¢0 and _0 as

A= _o ['l'o 1 1 )dC_o, (2.24)
voo----¢+ J-_(_ uo2

where the integration is carried out on _0 = constant. The

difference in A between two points on a streamline is the

time it takes a mean flow fluid particle to traverse the dis-

tance between those two points.

To complete the formulation of the problem, it is nec-

essary to specify boundary conditions for the unsteady po-

tential ¢. At the surface of the airfoil, the normal velocity

component must vanish, so that ¢ must satisfy

(_) + 9¢). ,_ = 0 (2.25)

or

aA = __). _, (2.26)
On

where ff is the unit normal at the surface of the airfoil, tn

the wake, the pressure is continous so that ¢ must obey

-_(_¢) = O, (2.27)

where A¢ is the jump in ¢ across the vortex sheet behind

the airfoil. Far upstream, ¢ must satisfy

¢ _ 0 as xl --4 -co. (2.28)

Atassi and Grzedzinski's Decomposition

of the Unsteady Velocity

For most flows of practical aerodynamic interest, there

will be a stagnation point near the leading edge of the air-

foil where the mean velocity U0 vanishes. At this point the

Drift function A has a logarithmic singularity, and the right

hand side of (2.19) then has a nonintegrable reciprocal sin-

gularity. Since A is additive, the right hand side of (2.19)

will remain undefined along the surface of the airfoil and

in its wake. Equation (2.26) then shows that the boundary

condition for ¢ is singular along the airfoil surface. Because

of these difficulties we conclude that it is not possible to use

Goldstein's approach directly for numerical computations

of unsteady vortical flows around aerodynamic bodies with

a stagnation point.

Atassi and Grzedzinski 5 have shown that it is possi-

ble to modify Goldstein's splitting of the unsteady velocity

field in such a way as to remove the singular and indetermi-

nate character of the resulting boundary condition for the

unsteady potential at the airfoil surface. In their decom-

position of the unsteady velocity, ff is split into the sum

of a known vortical component _R), which has zero nor-

mal and streamwise velocity components on the airfoil and

in the wake, and an unkown potential component ¢* that

satisfies equation (2.17) with a modified source term, so
that



e(_, t)= _R) + _¢. (2.29)

where ¢* satisfies

Do 1 D0¢*. 19' (P0_¢*) = 1_. (pou_.(m)) (2.30)
D-7(_o2 b-7 ) - po po

The vortical component if(n) is given by

_R) = _i) + _$, (2.31)

where $ is a function that satisfies

D0S

o--F = O. (2.32)

As is shown in [5], there is no pressure associated With the

velocity 95, so that the vortical velocity _n) produccs no

pressure fluctuations. The pressure is determined entirely

by ¢* and is given by

p, :_,Do ¢*=-p0:) _. (2.33)

In order to choose a paxticular function 5 that cancels

the singular behavior of _z) along the surface of the airfoil

and in its wake, the boundary condition

(_D + 95)-_ = 0 (2.34)

is imposed at the airfoil surface and in the wake. Condi-

tion (2.34) should be understood as the limit as we move

close to the airfoil and the wake. Details concerning the

construction of the function ¢ can be found in [5]. For the

important special case of incident harmonic velocity distur-

bances, specific formulas for $ are presented in [5], and will

be discussed shortly in the present paper.

The function u"(n) has zero normal and streamwise ve-

locity components at the airfoil surface and in the wake, so
that u-'(n) satisfies

u"(n). _ = O, (2.35)

and

_n). _. = 0, (2.36)

where ff and _" are the unit normal and tangent vectors.

The airfoil boundary condition for ¢* is then

(u-'(m + 9¢*). _ = 0 (2.37)

which reduces to simply

9¢*. ,_= 0. (2.3s)

In addition to satisfying the governing equation (2.30)

and the airfoil boundary condition (2.38), the unsteady po-

tential ¢* must also satisfy appropriate boundary condi-

tions in the far field, in the wake, and at the airfoil trailing

edge.

In the far field, equations (2.29) and (2.31) together

with condition (2.13) imply that ¢* must satisfy

9¢*-.*-95 as zl .--+-_a. (2.39)

In the wake of the airfoil, ¢* is not continuous but must

satisfy a jump condition determined by the continuity of

the unsteady pressure. Applying (2.33) on each side of the

vortex sheet behind the airfoil leads to the condition

_-_t(A¢*) 0 wake (2.40)

Finally, at the trailing edge point ¢* must be continu-

ous in the streamwise direction to ensure satisfaction of the

Kutta condition.

Upstream Disturbances

In a previous paper la the authors have shown that the

most general upstream vortical disturbances can be repre-

sented as the sum of three-dimensional, harmonic vorticity

waves in the airfoil frame of reference. Because the govern-

ing equation (2.30) is linear, we can without loss of gen-

erality consider a single Fourier component of the incident

disturbance, and obtain the solution to more general dis-

turbances by superposition. We therefore consider incident

velocity disturbances of the form

ff_o = ae i_'(_-'_u_O (2.41)

where (El << U¢¢,/_ is the wave number vector which spec-

ifies the direction of propagation of the gust, and 5" and

must satisfy

E. k = 0 (2.42)

in order to ensure that ffooissolenoidal (satisfiesthe con-

tinuityequation).

Now condition (2.13) shows that the unsteady velocity

ff(£, t) must satisfy

ff(£', t) ---*5"e5'(z-Tv_0 as xl -- -oo. (2.43)

Since X2 = _ and g20 is the stream function of a two-

dimensional mean flow,

F 2
X2 _x2+_ln(xl +x22) + constant as xl ---*-co,

(2.44)
so that we do not have X2 ---* x2 at upstream infinity, as

required by condition (2.20b). Equations (2.29), (2.31), and

(2.39) together with (2.19) then show that

ff(£,t) ---*_eik'(*'-U_t'x2+_w[:r-d_ 1n(_:'2+.22)+ .... t_t,_)

as xl --* --c_, (2.45)

so that (2.43) is not satisfied.

However, as discussed by Atassi a, for a real airfoil

of finite span, X2 ---* z2 + constant. The two-dimensional

approximation is only valid then for distances that are small

compared to the airfoil span, but large compared to the

chord. Thus, (2.44) should be considered in this limit.



Inordertoavoiddifficultieswithupstreamconditions,
theimposedupstreamdisturbancesshouldthentakethe
generalform

ffoo= _ei_'(2-_u_ 0 (2.46)

where X is defined by (2.21) - (2.23). Then with this defini-

tion of if=, equations (2.19) and (2.45) show that condition

(2.13) will be satisfied.

The Boundary Value Problem

We now summarize the boundary value problem that

has been developed. For convenience, we drop the * nota-

tion which was used to distinguish between the formulation

of Atassi and Grzedzinski and the formulation of Goldstein.

We consider a potential mean flow about a two-

dimensional airfoil of infinite span with three-dimensional,

rotational velocity disturbances of the form

ff_ = fie ir''(g-;'u_') (2.47)

imposed upstream (See Figure 1). The amplitude _ satisfies

18l << U_, and )_ is defined by equations (2.21) through

(2.23).

/Z_./h7 /

÷ t-,._ 2/r/k

FIGURE I. - AIRFOIL IN A IHREE-DIMENSIONAL GUST.

The

equation

Do- 1 _ _l_.(p0_¢)= l_.(p0ff(R)) '
b-/(_-7 _,_ ) p0 p0

where the unsteady velocity is given by

C(S,t)= _R) + _4

and the unsteady pressure is determined from

unsteady potential obeys the convective wave

(2.48)

(2.49)

p' = -p0(¢)% ¢. (2.5o)

In addition, ¢ must satisfy the boundary conditions

_¢ • _ = 0 airfoil surface (2.51)

_-_(A¢) = 0 (2 52a)waVe

Z_[9¢. ,_]= 0 wake (2.525)

'_¢..--,-_¢ as x,--_-co, (2.53)

and be continuous in the streamwise direction at the air-

foil trailing edge. Note that for completeness we have also

included boundary condition (2.52b), which imposes conti-

nuity of the normal velocity across the wake. For nonlift-

ing airfoils this condition is automatically satisfied, since

in that case ¢ is an odd function with respect to X2. For

lifting airfoils, however, ¢ is no longer an odd function and

condition (2.52b) must be imposed.

To complete the mathematical formulation of the

boundary value problem, the explicit expression of the func-

tion ¢ must be given. For a complete discussion of the

derivation of ¢ for the general problem of arbitrary up-

stream disturbances, the reader should consult Reference

5. For the problem of periodic disturbances of the form

(2.47) imposed upstream of a single obstacle which is two-

dimensional (such as an isolated airfoil), it is shown in [5]

that ¢ is given by

.:._(i + a2kl - alk2 1 - e -ikaX2 )ei_.(.__Tu_.,O '4
<-_ 1 +/_0uook, k=

(2.54)
where

g= (a,,a=,aa) and ao = _(cgUo)-' (2.55)
On s

and n denotes the direction of the outward unit normal, S

denotes the stagnation point near the airfoil leading edge,

and U0 = I_f01 is the magnitude of the mean velocity.

With this definition of ¢, and with the upstream veloc-

ity disturbances given by (2.47), the vortical velocity may

then be written

d R)= [_(,_. K)]_ '_(x-w_'_ + _. (2.56)

This completes the linearized mathematical formula-

tion of the general boundary value problem for the case of

unsteady vortical flow past a lifting airfoil.

IIL Basic Numerical Approach

Reformulation and Nondimensionalization

of the Boundary Value Problem

For numerical purposes it is necessary to reformulate

the boundary value problem presented in the previous sec-

tion into a form more suitable for numerical computations.

Of particular concern is condition (2.53). In order to facili-

tate the implementation of the far field boundary condition,

it is convenient to replace ¢ by a function whose gradient

vanishes as r --+ co, where r is the distance from the airfoil

center.

To this end, we introduce the potential functions ¢1

and ¢2, where



¢ = ¢1 - ¢2 (3.1)

and ¢2 is a known function which is constructed such that

1¢2- $1-* 0 as r _ co. (3.2)

Equation (3.1) together with conditions (2.53) and (3.2)

then show that the new potential function ¢1 will satisfy

_¢, "-* V¢2 - _¢ _ 0 as r --* c_. (3.3)

The problem may then be reformulated in terms of the

unknown potential ¢1.

In the present paper we will not concern ourselves with

the explicit expression of the potential function ¢2. The

reader may consult [8] or [9] for details.

Before presenting the reformulated boundary value

problem in terms of the potential ¢1, we present the nondi-

mensionalization of the problem. We normalize as follows:

c
xI,x2,x_,Xx,X2,X3 by

0 by _ U_

ff2o by _p_Uoo

U0, Co by Uo¢

Po by p¢_

p' by pooU_[U.]

t, A by c2U,,

w by
¢

kl, k2, ks by 2
¢

¢, $, ¢,, ¢2 by _ lg[

The normalized wave number kl = _ where w and2--0-2-_,
U_ are the dimensional angular frequency and free stream

velocity, respectively, is called the reduced frequency.

We will assume throughout the remainder of the

present section that all quantities are nondimensional.

The governing equation for ¢1 is then

Do( 1 D0¢, !_.(p0%, ) =
Dt co-'-2 Dt )-po

(3.4)

_. (p0#R))
P0

and the boundary conditions are

%,-a = %2-a

-_t [A(¢, - ¢_)] = o

A[_(¢, _ ¢_). a] = o

/9o(.1 D0¢_ 1_. (P0_¢2)
+ Dt Co2 Dt ) - Po

airfoil surface (3.5)

wake (3.6a)

wake (3.6b)

z, ---* -oo. (3.7)

Finally, the nondimensional expressions for the poten-

tial function ¢, for the unsteady velocity, the vortical ve-

locity, and for the upstream velocity disturbances are

i

= F(.,+
a2kl --alk2 1 --e -ik2x'

1 + iaokl k2
)e i_''_-ik't (3.8)

where

XI=A, X2=_o, Xa=x3 (3.9)

ff(_,t) = _R) + _(¢1 - ¢2) (3.10)

where

_R) = (_(_. f)]e_.x-_k,, + _$. (3.11)

ffc_=ge i_'2-ik'' (3.12)

Determination of Mean Potential Flow

In order to obtain numerical solutions to equation (3.4)

and its associated boundary conditions, one must first ob-

tain the steady potential flow about the airfoil for the given

flow conditions. This will in general require the use of a

standard potential flow solver such as FLO36J 4

However, an examination of equations (3.8) through

(3.12) indicate that the most natural choice of independent

variables in which to solve equation (3.4) are _0 and _0, the

mean flow potential and stream functions. Since standard

potential flow codes solve the steady problem in terms of

the spatial coordinates zl and z2, there is some difficulty in

obtaining the steady solution as a function of (I>0 and q/0.

Another difficulty arises due to the fact that the grids

used by steady flow solvers are not suitable for the unsteady

calculation. As reported in References 13 and 15, accurate

solution of equation (3.4) over a large range of flow condi-

tions requires using grids which are determined as a func-

tion of both the reduced frequency kl and the free stream

Mach number _Io_. This means that in general it will be

necessary to interpolate the solution from the steady gTid

onto the appropriate unsteady grid.

Because of the loss of accuracy that can result from

such an interpolation process, and also because of the need

to know the mean flow as a function of 'b0 and _20, an an-

alytical scheme that can obtain the compressible, subsonic

flow about isolated airfoils was developed. The scheme is

based on the idea that, except for a small inner region sur-

rounding the airfoil, the flow gradients are not too large.

Thus in the large outer region extending to infinity, the

mean flow is essentially governed by a set of linear equa-

tions. As a result, one can use Gothert's Rule, whereby

the compressible flow about a given airfoil can be obtained

from the incompressible flow about a similar airfoil.

The only limitation in obtaining the mean potential

flow by this particular approach is that the method will not

give a good approximation in the inner region and particu-

laxly near the stagnation point. However, extensive testing

of this approach and comparing with the steady potential



flow solverFLO36 has shown that the region of inaccuracy

is very small. Results that are presented in [8],but which

are not reproduced here due to a lack of space, show that

the agreement overallis quite good, with the exception of

grid points on the airfoil surface that are near the stagna-

tion point. Because of this inaccuracy, we use FLO36 to

calculate the mean flow quantities along the airfoil surface

itself, and use the approximate analytical scheme off the

airfoil except in a small region just upstream of the stag-

nation point. In this region, for airfoils that have steady

loading, the velocities are calculated using a Taylor series

expansion. For airfoils without steady loading, the veloci-

ties are calculated from a local analytical solution which is

patched to the outer solution.

For complete details concerning this method of de-

terming the mean flow, the reader should consult [8].

Frequency Domain Formulation

An inspection of equations (3.8), (3.11), and (3.12)in-

dicates that the time dependence of the present bound-

ary value problem comes entirely through the harmonic

term e -ik_t. It is therefore possible to make a transfor-

mation from the time domain into the frequency domain

by a simple change of dependent variable. By transform-

ing the problem into the frequency domain, time is com-

pletely eliminated from the problem and it is possible to

significantly simplify the mathematical formulation of the

boundary value problem.

For the case of two-dimensional mean flow, we trans-

form into the frequency domain by making the following

change of dependent variable:

¢1 = _oe -iktt+ik3z8 (3.13)

By including the iksz3 term in the transformation, the har-

monic dependence on the spanwise component z3 is also

eliminated, since all of the e it_z_ terms then factor out from

each side of the equation. This is of course possible in view

of (3.9) and (3.12).

In addition to the frequency domain transformation

(3.13), we also introduce the following change of both de-

pendent and independent variables:

= Ce -iK°O where Ko = klM_
/3L (3.14)

and

¢ = ¢0 (3.15a)

=/3_0 _0 (3.15b)

where/_oo = _, and Moo is the free stream Mach

number.

By making this coordinate transformation, equation

(3.4) will reduce to a Helmholtz equation in the far field.

This is particularly advantageous for the implementation of

the far field boundary condition.

The frequency domain governing equation then takes

the following form:

_B 2 [02¢ 02¢ .k_M_ k_ )¢1
"®_o¢_ + _ + ( _ _L

0¢ 0¢ 02¢ . 02¢
+ AI¢ + A_-_ + A3--_ + A4--_ + As--_

=eiK°*(& + 52 + & - &) (3.16)

where the coefficients Al...As are known functions which

depend on the mean flow, and $1 ...$4 are given by

_-iktl+iklza SI = _7P.__._0 * {[_(_. x_)]gir.,_-iktt "t- V_}

Po (3.17a)

(3.17b)

D0( 1 D0¢2
e-'k"+_k_" & = #7"_ _ " (3.17c)

e -/k''+ik'`' .5'4 = 1_. (p0V¢=) (3.17d)
p0

In the far field both the coefficients A1 ...As and the source

term Sl + S2 + $3 - $4 tend to zero.

Our basic numerical approach to solving equation

(3.16) is to use the method of finite difference approxima-

tions. By discretizing the flow field and employing finite

differences at each grid point, a large linear system of equa-

tions is obtained which can be solved using a matrix solver.

Previous experience in solving equation (3.16) for the

case of flat plate and symmetric airfoils has shown that

the independent variables (O, q) are not suitable compu-

tational coordinates for the gust response problem 13,1s

There are difficulties in obtaining consistently accurate re-

sults over a large range of Mach numbers and reduced fre-

quencies, and also problems with the implementation of far

field boundary conditions. A transformation of the inde-

pendent variables is needed which not only provides art ad-

equate distribution of grid points around the airfoil in the

near field, but also provides a distribution of grid points

in the far field which is suitable for acoustic wave propa-

gation and the implementation of far field, radiation type

boundary conditions.

In order to satisfy these requirements, we make a trans-

formation into the elliptic coordinates (r/, () with the trans-

formation

¢ = a* cos(_r,7)cosh(_r{) (3.18a)

if/= a* sin(Trr/)sinh(r{) (3.18b)

where a* is an arbitrary constant (See [8] for the definition

of a*). Note that in the far field the elliptic coordinates

reduce essentially to cylindrical coordinates, and that the



¢I,- _ planeismappedintoasemi-infinitestripinthe7/-
plane.

Withthischangeofvariables,thegoverningequation
takestheform

__2 ra2¢ 02¢ .., .k_M=o,:, _ )
_, 072 + T(¢ -,-.,,.,7,_)( _ 5£ ¢ ]

o¢ o¢
+ AI JOT,()¢ + T1N + T:_N

02¢ . _ 0"¢ + Ts 5'¢
+ r:, gg + 1407--r 070---7

-= eiK"¢(SJ. + $2 + ,-,ca-S4)J(7,_), (3.19)

where J(7,_) is the Jacobian of the transformation (3.18),

and T1...T5 are known functions of (7, _) which depend upon

the mean flow.

The frequency domain boundary value problem then

consists of the governing equation (3.19) and boundary con-

ditions (3.5) - (3.7), together with the requirement that the

velocity is finite at the trailing edge.

However, we point out that condition (3.7), which re-

quires that _¢1 "--+ 0 at upstream infinity, cannot be im-

posed throughout the far field on a boundary at a finite

distance from the airfoil. To implement such a condition

would impose a reflecting boundary condition which can

lead to large errors in the solution.

To correctly model the physics of the present unsteady

boundary value problem requires that the far field bound-

ary condition be such that it allows outgoing acoustic waves

to leave the solution domain without being reflected back

into the computational grid. While this can be done in

more than one way, the authors have found that the best

approach is to use a Sommerfield radiation condition on the

unsteady pressure. This approach is easy to implement and

has the advantage of giving an accurate far field solution

from which the acoustic radiation can be calculated.

Our far field boundary condition is then given by

[ 0_.0._ /ktMoo _ 0 kl

[OR

where

= Rcos @ (3.21a)

= R sin (3. (3.21b)

This condition is applied for all grid points on the far field

boundary.

Numerical Solution Procedure

The problem to be solved numerically consists of the

governing equation (3.19) and the boundary conditions

(3.5), (3.6a), (3.6b), and (3.20). As our major purposc

in the present paper is to present the formulation of the

boundary value problem and to discuss numerical results,

we will not discuss the remaining details of our numerical

approach. The interested reader should consult [8] or [9].

We do, however, present the following general information

about our numerical solution procedure.

First, our basic numerical approach is to use the

method of finite difference approximations and to solve

the resulting matrix equation using a direct, sparse matrix

solver. The governing equation is modelled using nine-polnt

central differencing, and the airfoil and far field boundary

conditions are satisfied using four-point, one-sided differ-

encing. The wake boundary condition (3.6b) is satisfied

using three-point, one-sided differencing both above and

below the wake.

Second, we point out that it is essential that the source

term be evaluated accurately in order to obtain accurate

solutions to the problem. This depends largely upon an

accurate evluation of the Drift function defined by equation

(2.24), and upon an accurate evaluation of the potential

functions ¢= and ¢ so that condition (3.2) is satisfied in the

numerical implementation.

Finally, we mention that obtaining accurate solutions

to the present wave propagation problem requires using

grids which are determined as a function of both the Mach

number and reduced frequency la,_. See [8] or [9] for de-

tails on how this is done for the lifting airfoil problem.

IV. Discussion of Numerical Results

Our major purpose in the presentation and discussion

of numerical results is to demonstrate the effects of airfoil

thickness, angle of attack, camber, and Mach number on the

airfoil unsteady response to imposed upstream rotational

velocity disturbances (gusts). We will examine in detail

the effects of each of these parameters on the unsteady lift

and moment of airfoils subjected to one-, two-, and three-

dimensional gusts.

The authors would like to emphasize that great care

was taken to validate the codes that were used to obtain the

numerical results presented in this section. Due to a lack of

space, however, we will not concern ourselves with the vali-

dation process in the present work. Information concerning

the steps that were taken to validate our numerical scheme

can be found in References 8, 9, and 15.

Before discussing the unsteady results, we show plots

of the mean flow Mach number at the airfoil surface for

the various flow configurations that were considered in the

present work. These plots are shown in Figures 2 through 9.

All of the airfoils used for these calculations were Joukowsld

airfoils of various geometries. The Marh number results

shown in these figures, with the exception of the incom-

pressible results in Figure 8, were obtained from the steady

potential flow solver FLO36}* The incompressible results

were obtained from the known analytical solution for the

ideal flow around a Joukowski airfoil.



Figures2 and3 presentresultsfor a12%thicksym-
metricairfoilat zerodegreesincidenceforMachnumbers
of .5and.7,respectively.Eventhoughtheseairfoilsare
unloaded,theirthicknessaltersthemeanflowconsider-
ablyfromthelinearthinairfoilcasewheretheMachnum-
beris constantthroughouttheflow. Notethat forthe
higherMachnumbercasethemeanflowvariationismuch
stronger.It willbeseenshortlythateventhisamountof
meanflowvariationcanhaveasignificanteffectontheun-
steadyflowdueto thedistortionofthevorticalstructure
oftheupstreamdisturbances.

Figures4 - 9presentresultsfor airfoils with steady

loading. The results in Figure 4 are for a 12% thick sym-

metric airfoil at an angle of attack of 5 °, and the results

in Figure 5 are for a 12% thick airfoil with 5% camber but

0 ° angle of attack. The free stream Mach number for both

of these plots is .5. Note that for the uncambered airfoil

with 5 ° angle of attack, the loading is concentrated near the

leading edge, whereas for the cambered airfoil with zero in-

cidence angle the loading is distributed more evenly over

the entire airfoil. Note also that even though the gradients

in the flow for Figure 4 are much stronger than for the re-

sults in Figure 5, the airfoil in Figure 5 has the larger steady

lift coefficient. As will be seen later, the magnitude of the

steady lift coefficient is in some sense a good measure of

the amount of mean flow distortion for lifting airfoils over

nonlifting airfoils.

In Figures 6 and 7, we present results for airfoils with

2 ° angle of attack, 5% camber, and a free stream Mach

number of .5. The thickness ratios are .06 and .12, respec-

tively. Because of the larger thickness ratio, the airfoil in

Figure 7 has a much smoother Mach number profile near

the leading edge, and also a slightly larger steady lift coef-

ficient. Due to its heavier loading, the airfoil in Figure 7

will have a stronger distortion effect on the incident vortical

disturbances than will the airfoil in Figure 6, even though

their angle of attack and camber ratios are the same.

Finally, in Figures 8 and 9, results are presented for

12% thick symmetric airfoils at 3 ° angle of attack with

free stream Mach numbers of .1 and .6, respectively. Note

that, due to compressibility effects, the increase in the Mach

number leads to much stronger gradients in the mean flow.

Again we would expect the stronger mean flow variation to

in turn lead to a stronger distortion of the impinging gusts.

We now turn our attention to the unsteady results pre-

sented in Figures 10 through 39. The results that are shown

are presented in sets of six plots. In each set, the first three

plots present results for the normalized unsteady lift, and

the next three plots present results for the normalized un-

steady moment. The normalized unsteady lift and moment

are usually referred to as the response functions and are

defined by L'

aL(k,,kz, M_) = _p_cV_l_le'_' (4.1)

and

M'

RM(kl,k_,M_o) = _poo_U_l_l_'"' (4.2)

where L' is the unsteady lift and M' is the unsteady mo-

ment about the airfoil center.

In Figures 10 through 21 we present results that

demonstrate the effects of airfoil thickness on the unsteady

response functions. Figures 10 through 15 are for sym-

metric unloaded airfoils, and Figures 16 through 21 are for

loaded airfoils. Figures 22 through 33 present results that

demonstrate the effects of mean airfoil loading on the un-

steady response functions. In Figures 22 through 27, the

induced loading is due to angle of attack, and in Figures 28

through 33 it is due to airfoil camber. Finally, Figures 34

through 39 present results that demonstrate the effects of

Mach number on the unsteady response functions.

In each set of six plots, we present results for one-,

two-, and three-dimensional gusts - first for the unsteady

lift and then for the unsteady moment. The reduced fre-

quency values used in the calculations were the same for all

the figures, and were as follows: kl = 0, 0.01, 0.03, 0.06,

0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.0, 3.5,

and 4.0. For each response function shown, the point on the

real axis and furthest to the right corresponds to the quasi-

steady case in which kl = 0. The other points along the

response function curve correspond in order to the reduced

frequency values given above.

The conditions on the gust wave number parameters

for the plots shown are as follows: for the one-dimensional

case, i.e., a transverse gust, k2 = 0, k3 = 0, a_ = 0,

a2 = 1, as = 0; for the two-dimensional gust, i.e., a

transverse and longitudinal gust, k2 = kl, k3 = 0,

al = -a2, I_1 = 1, a2 > 0; and for the three-dimensional

ease k2 = kl, k3 = .4, _. k = 0, I_l = 1, a_ > 0,

and _ = 7
al -- _ •

Effectsof AirfoilThickness on the

Unsteady Response Functions

In Figures 10 through 15 we compare unsteady results

for a zero thickness airfoil versus those for a 12% thick sym-

metric Joukowski airfoil (See Figure 3). The free stream

Mach number is .7, and both airfoils have zero mean load-

ing. It is clear from the results shown in these figures that

airfoil thickness can have a strong effect on the unsteady

lift and moment, and that the effect depends on both the

reduced frequency and the gust wave number conditions.

For the case of the transverse gust, there is a strong

effect on both the unsteady lift and moment for both the

low and high reduced frequencies. Figure 10 shows that

the unsteady lift for the quasi-steady case ( kl --+ 0 ) is in-

creased by about 16% for the thick airfoil over the fiat plate

airfoil, and that the magnitude of the unsteady lift is sub-

stantially increased for the low reduced frequencies ranging

roughly from 0 up to about .1. For the higher frequencies

there is a reduction in the unsteady lift and also a change

in the phase, whereas in the mid-frequency range of about

.2 up to 2, the effect is mainly a change in the phase. The

effects of thickness on the unsteady moment are similar to

its effect on the unsteady lift, with the exception that the

10



effectatthehigherfrequenciesissomewhatstronger.For
boththeunsteadymomentandtheunsteadylift, theeffect
ofairfoilthickness in the transverse gust case is in general

to significantly increase the magnitude of the response for

the low reduced frequencies and decrease it for the high

reduced frequencies.

In the case of the transverse and longitudinal gust,

the effects of airfoil thickness are somewhat different from

the transverse gust case, in that there is little effect on

the unsteady lift and moment at the lower frequencies. At

the higher frequencies, the effect is mainly a reduction in

magnitude and a change in phase, analagous to the results

for the transverse gust.

The three-dimensional gust results shown in Figures 12

and 15 indicate that the strongest effect of the airfoil thick-

ness occurs for reduced frequencies in the mid-frequency

range, rather than for the low or high frequencies as was

the case with the 1-D and 2-D gust results. Note that the

quasi-steady moment for this case decreases for the thicker

airfoil, rather than increasing as in the transverse gust case

(Figure 13).

Figures 16 through 21 compare unsteady results for

a 6% thick airfoil versus a 12% thick airfoil. The angle

of attack and camber ratios of the airfoils are 2 ° and .05,

respectively, and the free stream Mach number is .5 (See

Figures 6 and 7). The effects of thickness on the unsteady

response functions is not as strong in these figures due to

both the lower Mach number and the fact that the com-

parison is between 6% thick and 12% thick airfoils versus

0% and 12% thick airfoils. There are, however, similari-

ties between these results and those described above. For

the transverse gust, the effects are mainly to increase the

magnitude of the response at the lower frequencies and de-

crease it at the higher frequencies. For the transverse and

longitudinal gust, there is not much effect at the low re-

duced frequencies, while at the higher frequencies there is a

reduction in magnitude analogous to that of the transverse

gust case. The three-dimensional gust results in Figures 1S

and 21 show little effect due to the change in airfoil thick-

ness.

We conclude that airfoil thickness can have a large

effect on the unsteady lift and moment, and that the ef-

fect varies considerably depending on both the reduced fre-

quency and the gust wave number parameters. In addition,

the results in Figures 10 - 15 show the inability of linear

theory to serve as an adequate approximation for flows with

mean flow variation which occurs due to airfoil thickness.

Effects of Mean Loading on the

Unsteady Response Functions

In Figures 22 - 33 we present results that demonstrate

the effects of mean airfoil loading on the unsteady response

functions. In Figures 22 - 27, the induced loading is due to

angle of attack alone, while in Figures 28 - 33 the induced

loading is due to camber alone. The free stream Mach

number is .5, the airfoil thickness ratio is .12, and the steady

lift coefficients corresponding to the two loaded airfoils are

.72 and .82, respectively (See Figures 2, 4, and 5).

An analysis of the results indicates that there are re-

mark,able similarities between the results shown in Figures

22-24 and Figures 28-30 which demonstrate the effects of

mean loading on the unsteady lift.

It is seen that for the case of a transverse gust (Fig-

ures 22 and 28), there is virtually no effect on the unsteady

lift due to mean loading. This result is in agreement with

the theoretical predictions of Atassi 3 concerning the ef-

fect of mean airfoil loading on the unsteady lift of airfoils

subjected to a transverse gust in incompressible flow. It is

interesting that the theoretical result essentially holds also

for compressible flows.

Unlike the results for the simple transverse gust, the

results for the transverse and longitudinal gust (Figures 23

and 29) show a strong effect due to mean airfoil loading. In

both Figures 23 and 29, the effect at the low frequencies is

essentially to shift the curve in the direction of the negatlve

real axis. For the results in Figure 23, the reduction in the

quasi-steady lift (kl _ 0, k2 _ 0) for the loaded airfoil over

the unloaded airfoil is 20%, while for the results in Figure

29, the reduction is 23%.

It is clear from the results in these figures that mean

airfoil loading leads to a significant reduction in the un-

steady lift for the low reduced frequencies of an airfoil in

a transverse and longitudinal gust. It turns out that the

amount of the reduction in the quasi-steady lift for the two-

dimensional gust case is directly proportional to the steady

lift coefficient of the loaded airfoil. That is, if we denote the

change in the quasi-steady lift from the unloaded airfoil to

the loaded airfoil by AC_, and the proportionality constant

by -K, we have approximately AC L = -K CL, where CL

is the steady lift coefficient of the loaded airfoil and K is a

constant. It has been determined from the results presented

in [8] that the constant K -- .25. This result is in agreement

with the theoretical results of Atassi 3, from which it can be

shown that for airfoils with small angle of attack and cam-

ber in an incompressible flow, A C'L = - _ _ C L = --.23CL.
The difference in the theoretical value and the numerical

value of the proportionality constant can be accounted for

by the fact that the theoretical result does not account for

the thickness of the airfoil. It is remarkable that the value

of K = .25 holds for both lightly loaded airfoils and heavily

loaded airfoils, and is also nearly independent of the Mach
nun]ber.

In looking at the three-dimensional gust results in Fig-

ures 24 and 30, it is clear that the mean airfoil loading has

a strong effect on the unsteady lift for the low reduced fre-

quencies. As in the case of the transverse and longitudinal

gust, the effect of the loading in the 3-D case is to signifi-

cantly reduce the magnitude of the unsteady lift. Interest-

ingly enough, the reduction in the quasi-steady lift for the

3-D case is also proportional to the steady lift coefficient

of the loaded airfoil. In this case the value of the propor-

tionality constant K is .10. The reduction in the value of
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theproportionalityconstantfor the3-Dcaseisprobably
duetotheeffectofthespanwisewavenumberk3. At the

present time, however, it is not known to what extent the

value of K depends upon ks.

Unlike the unsteady lift, the unsteady moment re-

sponds differently to mean airfoil loading depending upon

whether the loading is induced by angle of attack or cam-

ber. The results in Figures 26-27 indicate that for the 2-D

and 3-D gust cases, the unsteady moment is sensitive to

changes in the angle of attack, particularly at the lower

frequencies. For the 2-D case, the quasi-steady moment of

the loaded airfoil has been reduced by 17% over that of

the unloaded airfoil, and for the 3-D case the reduction is

11%. An analysis of the results in Figures 32-33, however,

indicates that there is no corresponding reduction in the

quasi-steady moment when the mean loading is induced by

airfoil camber, and in fact that the camber of the airfoil has

almost no effect on the unsteady moment for any range of

reduced frequencies.

We conclude, then, that for the airfoils considered in

the present work, an increase in angle of attack of an airfoil

in a 2-D or 3-D gust leads to a significant reduction in the

unsteady moment for the low reduced frequencies, but an

increase in the airfoil camber has virtually no effect on the

unsteady moment for any range of reduced frequencies.

This is in contrast to the effects of mean loading on the

unsteady lift, where both angle of attack and camber lead

to a significant reduction in the magnitude of the unsteady

response for the low reduced frequencies of the 2-D and

3-D gust cases. Since the reduction of the quasi-steady lift

is proportional to the steady lift coefficient and indepen-

dent of whether the loading is induced by angle of attack

or camber, the steady lift coefficient is in some sense a good

measure of the amount of mean flow distortion for lifting

airfoils over nonlifting airfoils. In addition, this points out

that the amount of error made by a numerical scheme which

does not take into account the effects of mean flow distor-

tion increases as the steady loading on the airfoil increases.

Effects of Mach Number on the

Unsteady Response Functions

We conclude our discussion of the numerical results by

looking at the effects of Mach number on the unsteady re-

sponse functions. Figures 34 through 39 show comparisons

of the unsteady response functions for a symmetric, 12%

thick airfoil with 3° angle of attack at Mach numbers of .1

and .6.

An analysis of the results would seem to indicate that

the main effect of an increase in Mach number on the un-

steady response functions is to substantially increase the

magnitude of the unsteady response for the low reduced

frequencies, decrease the magnitude at the high frequen-

cies, and alter the phase for the middle frequencies. The

increase in magnitude at the low frequencies is quite strong,

particularly for the 1-D and 2-D gust cases. For the trans-

verse gust, the quasi-steady lift for the .6 Mach number

airfoil is 300£ larger than for the .1 Mach number airfoil.

For the transverse and longitudinal gust, the increase is

21%, while for the 3-D gust the increase is only 6%. The

percent increase in the quasi-steady moments for the l-D,

2-D, and 3-D cases are similar.

Although it is not readily apparent from the results in

Figures 34-39, another effect of an increase in airfoil Mach

number is to intensify the effect of mean flow distortion

for a given airfoil configuration. Due to an increase in the

Mach number, the mean flow gradients become stronger,

and there will be a correspondingly stronger distortion ef-

fect upon the oncoming vortical waves. The airfoil selected

for the comparison in Figures 34 - 39 is too lightly loaded

for this effect to be apparent. The reader may consult [8]

for results which demonstrate this phenomenon.

V. Conclusion

In the present paper the authors have presented a lin-

earized unsteady aerodynamic analysis for unsteady vorti-

cal flows around lifting airfoils. The first order analysis that

we have presented fully accounts for the distortion effects of

the nonuniform mean flow, and the results presented have

demonstrated that mean flow distortion can have a very

strong effect on the unsteady lift and moment.

We conclude on the basis of the numerical results pre-

sented in the previous section that our linearized unsteady

aerodynamic analysis can be used to solve a wide variety

of unsteady vortical flow problems. The results that were

presented demonstrated the effects of airfoil thickness, cam-

ber, angle of attack, and Mach number on the unsteady lift

and moment of Joukowski airfoils in subsonic vortical flows.

It was seen that the effects of these parameters on the un-

steady response functions varies considerably, depending on

the magnitude of the reduced frequency, the Mach number,

and the gust wave number conditions. The results pre-

sented have thus demonstrated the importance of having a

numerical scheme which can handle three-dimensional vor-

tical flows for a large range of Math numbers and reduced

frequencies.

Finally, the authors are in the process of extending

the present linearized analysis to include transonic flows.

Details will be presented in a future paper.
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FIGURE 2. - MEAN FLOW MACH NUMBER AT THE AIRFOIL SUR-

FACE FOR A 12 PERCENTTHICKJOUKOWSKIAIRFOILWITH
M_ = 5, a = 0°, AND CAMBERRATIO= 0.0. STEADY
CL = 0.0. CALCULATIONBY FL036.
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FIGURE 3. - MEAN FLOW MACH MUMBER AT THE AIRFOIL SURFACE

FOR A 12 PERCENT THICK JOUKOWSKI AIRFOIL WITH M_ : .7,

a = 0 °, AND CAMBER RATIO = 0.0. STEADY C L : 0.0. CAL-

CULATION BY FLO3G.
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FIGURE tl. - MEAN FLOWRACHNURBERAT THE AIRFOIL SURFACE

FOR A 12 PERCENTTHICK JOUKOWSKIAIRFOIL WITH M_ = .5,

Q = 5°, AND CAMBERRATIO = 0.0. STEADYCL = 0.72.
CALCULATIONBY FL036.
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FIGURE 5. - MEAN FLOW MACH NURBER AT THE AIRFOIL SUR-

FACE FOR A 12 PERCENT THICK JOUKOWSKI AIRFOIL WITH

M_ = .5, 0 = 0°, AND CAMBER RATIO = 0.05. STEADY

CL = 0.82. CALCULATION BY FL036.
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FIGURE 6. - MEAN FLOW MACH NthNBERAT THE AIRFOIL SUR-

FACE FOR A 6 PERCENT THICK JOUKOWSKI AIRFOIL WITH

M_= .5, 0 = 20, AND CAliBERRATIO = 0.05, STEADY

CL = 1.05. CALCULATION BY FL036.
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FIGURE 7. - MEAN FLOW MACH NUMBER AT THE AIRFOIL SURFACE

FOR A 12 PERCENT THICK JOUKOWSKI AIRFOIL WITH M = .5,

(I= 2o , AND CAMBER RATIO = 0.05. STEADY CL = 1.I].
CALCULATION BY FL036.
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FIGURE 8. - MEAN FLOW MACH NUMBER AT THE AIRFOIL SURFACE

FOR A 12 PERCENT THICK JOUKOWSKI AIRFOIL WITH Moo= .I,

0 = 30, AND CAMBER RATIO = 0.0. STEADY CL = 0.36.
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FIGURE 9. - MEAN FLOW MACH NUMBER AT THE AIRFOIL SUR-

FACE FOR A 12 PERCENT THICK JOUKOWSKI AIRFOIL WITH

Moo= .6, a = 30, AND CAMBER RATIO = 0.0. STEADY CL =
O.h8. CALCULATION BY FL036.
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FIGURE lO. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF

A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE GUST•

Moo = .7, (_= 0°, CAMBER RATIO = 0.0.
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FIGURE 11. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF

A SYMMETRIC JOUKOWSK[ AIRFOIL IN A TRANSVERSE AND LONGI-

TUDINAL GUST, M = .7, 0 = 0°, CAMBER RATIO = 0.0.
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FIGURE 12. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF

A SYMMETRIC JOUKOWSKI AIRFOIL IN A THREE-DIMENSIONAL

GUST. M=_ = .7,0 = 0°, CAMBER RATIO = 0.0.
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FIGURE 13. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT

OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE GUST.

M=o = .7, a = 0°, CAMBER RATIO = 0.0.
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FIGURE lq. - EFFECT OF THINNESS ON THE UNS_DY MOMENT

OF A SYI_METR[CJOUK_SKI AIRFOIL IN A _MSVER_ AND

LONGITUDINAL GUST. M_ = .7, a = 0°, CAMBER RATIO =

0.0.
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FIGURE 15. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT

OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A THREE-DIMENSIORAL

GUST. M=o = .7, a = 0°, CAMBER RATIO = 0.0.
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FIGURE 16. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF

A JOUKOWSKI AIRFOIL IN A TRANSVERSE GUST. M=o = .5,
0 = 20, CAMBER RATIO = 0.05.
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FIGURE 17. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF

A JOUKOWSKI AIRFOIL IN A TRANSVERSE AND LONGITUDINAL

GUST. M=o = .S, (]= 20 , CAMBER RATIO = 0.05.
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FIGURE 18. - EFFECT OF THICKNESS ON THE UNSTEADY LIFT OF A

JOUKOWSKI AIRFOIL IN A THREE-DIMENSIONAL GUST. M=o = .5,

0 = 20, CAMBER RATIO = 0.05.
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FIGURE 19. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT

OF A JOUKOWSK] AIRFOIL IN A TRANSVERSE GUST, M=o= .5,
0 = 2°, CAMBER RATIO = 0.05.
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FIGURE 20. - EFFECT OF THICKNESS ON THE UNSTEN)Y MOMENT OF

A JOUKOWSKI AIRFOIL IN A TRANSVERSE AND LONGITUDINAL GUST.

Moo = .5, 0 = 2°, CAMBER RATIO = 0.05.
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FIGURE 21. - EFFECT OF THICKNESS ON THE UNSTEADY MOMENT

OF A JOUKOWSKI AIRFOIL IN A THREE-DIMENSIONAL GUST.

M=o = .5, (I= 2°, CAMBER RATIO = 0,05.
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FIGURE 22. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY

LIFT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERS_

GUST. Moo = .5, THICKNESS RATIO = .12, CAMBER RATIO =
0.0.
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FIGURE 23. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY

LIFT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE

AND LONGITUDINAL GUST. M=_ = .5, THICKNESS RATIO =

.12, CAMBER RATIO = 0.0.
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FIGURE 2q. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY

LIFT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A THREE-

DIMENSIONAL GUST. M_ = .5, THICKNESS RATIO " .12,
CAMBER RATIO = 0.0.
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FIGURE 25. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY

_OMENT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANS-

VERSE GUST. M_ = .5, THICKNESS RATIO = .12, CAMBER
RATIO = 0.0.
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FIGURE 26. - EFFECT OF ANGLE OF ALACK ON THE UNSTEADY

MOMENT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANS-

_RSE AND LONGITUDINAL GUST. M_ = .5, THICKNESS
RATIO = .12, CAMBER RATIO = 0.0.
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FIGURE 27. - EFFECT OF ANGLE OF ATTACK ON THE UNSTEADY

MOMENT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A THREE-

DIMENSIONAL GUST. M_ = .5, THICKNESS RATIO = .12,

CAMBER RATIO = 0.0.
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FIGURE 28. - EFFECT OF CAMBER ON THE UNSTEADY LIFT OF A

JOUKOWSKI AIRFOIL IN A TRANSVERSE GUST. Moo = .5,

O = 0°, THICKNESS RATIO = .12.
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FIGURE 29. - EFFECT OF CNqBER ON THE UNSTEADY LIFT OF A

JOUKOWSKI AIRFOIL IN A TRANSVERSE AND LONGITUDINAL GUST,

Moo = .5, a = 0°, THICKNESS RATIO = .12.
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FIGURE 30. - EFFECT OF CAMBER ON THE UNSTEADY LIFT OF A

JOUKOWSKI AIRFOIL IN A THREE-DIMENSIONAL GUST. Moo =

.5, 0 = 0°. THICKNESS RATIO = .12.
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FIGURE 31. - EFFECT OF CAMBER ON THE UNSTEADY MOMENT OF

A JOUKOWSKI AIRFOIL IN A TRANSVERSE GUST. Moo = .5,

a = 0°, THICKNESS RATIO = .12.
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FIGURE 32. - EFFECT OF CAMBER ON THE UNSTEADY MOMENT OF

A JOUKOWSKI AIRFOIL IN A TRANSVERSE AND LONGITUDINAL

= .5, o = 0°, THICKNESS RATIO = .12.GUST. Moo
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FIGURE 33. - EFFECT OF CAMBER ON THE UNSTEADY MOMENT OF A

JOUKOWSKI AIRFOIL IN A THREE-DIMENSIONAL GUST. Moo = .5,

a = 0°, THICKNESS RATIO = .12.
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FIGURE 34. - EFFECT OF MACH NUMBER ON THE UNSTEADY LIFT

OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRNASVERSE GUST.

0 = 30• CAMBER RATIO = 0.0, THICKNESS RATIO = .12.
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FIGURE 35. - EFFECT OF MACH NUMBER ON THE UNSTEADY LIFT

OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE AND

LONGITUDINAL GUST. a = 30, CAMBER RATIO = 0.0, THICK-

NESS RATIO = .12.

.5

-.5
-,5

.5

o .6 z

b

I I I I
.5 1.0 1.5 2.0

REAL LIFT

FIGURE 3G. - EFFECT OF MACH NUMBER ON THE UNSTEADY LIFT

OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A THREE-DIMENSIONAL

GUST. o = 30, CAMBER RATIO = 0.0, THICKNESS RATIO :

.12.

-.5
-,5

f M_

I o .6
r

I I I I T

0 .5 1.0 1.5 2.0

REAL MOMENT

FIGURE 37. - EFFECT OF _CH NUMBER ON THE UNSTEADY

MOMENT OF A SYMEMTRIC JOUKOWSKI AIRFOIL IN A TRANS-

_RSE GUST. 0 = 30, CAMBER RATIO = 0,0, THICKNESS

RATIO : .12.
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FIGURE 38. - EFFECT OF MACH NUMBER ON THE UNSTEADY MOMENT

OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A TRANSVERSE AND

LONGITUDINAL GUST. O = 30, CAMBER RATIO = 0.0, THICK-

NESS RATIO = .12.
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FIGURE 39. - EFFECT OF MACH NUMBER ON THE UNSTEADY MO-

MENT OF A SYMMETRIC JOUKOWSKI AIRFOIL IN A THREE-

DIMENSIONAL GUST. _ = 30, CAMBER RATIO = 0.0, THICK-

NESS RATIO = .12.
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